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Abstract

Singular stresses arising in the neighborhood of contact surfaces introduced in laminated orthotropic plates by
mechanical joining with clamp-up were investigated by using local asymptotic solutions and full-field numerical
analysis. Three-dimensional B-spline approximation of the displacements and a penalty function-based contact solution
was used in the numerical analysis. Recent work has shown that fracture in bolted composite joints may initiate near the
outer edge of the bolt head or washer away from the hole edge, particularly if the joint is preloaded. Material and
geometric discontinuities exist in these regions, resulting in singular stress behavior. Asymptotic stress analysis was
performed to obtain the power of singularity in these regions as a function of the bolt-head (washer) stiffness. Fric-
tionless contact conditions were assumed. It was found that the characteristics of the stress singularity for such
practically important combinations as titanium bolt-head and carbon fiber composite plate are similar to a crack in
terms of the power of singularity and uniqueness of the singular term. Coefficients of the singular terms of the
asymptotic expansion were determined by comparison with the numerical solution in the close vicinity of the singular
contour. Good agreement between the asymptotic and numerical solution in the transition regions was observed.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Fasteners have been the primary method of joining advanced composite materials since their intro-
duction into mainstream aerospace applications in the mid-1960s. Design techniques for fastened joints
have received considerable attention since that time due to the complex nature of the stress fields in the
vicinity of the joint, the variety of failure modes that can occur, and the complexity of stress relieving
mechanisms such as matrix cracking. Optimal bolted joint design requires a thorough understanding of two
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important factors. First, the local stress field, including clamping forces, must be determined. Secondly, the
development of damage and failure, and how localized damage influences the stress field, must be
understood.

Recent advances in analysis and design of composite bolted joints typically have focused on areas of the
joint at which damage might initiate, possibly leading to failure. Experimental observations have suggested
several critical areas in such joints (Oplinger, 1996). These include the ply interface at the inside hole surface
(whether or not the surface is in contact with the fastener shank); the corner formed by the inside hole edge
and the top or bottom surface of the plate (which may be in contact with the bolt shank and the bolt-head
or washer, respectively); and the outer edge of the bolt-head or washer where it contacts the top or bottom
of the plate.

While the contact of the outer edge of the bolt-head with the composite plate has received less attention,
the experimental evidence suggests this area should be of primary interest under certain conditions. For
example, Smith et al. (1986) noted that washers in single-lap joints tend to “dig in” as the bolt and washer
rotate under load, producing early damage in the loading cycle. Clip gauging suggested very little bending
(due to eccentric loading of the single-lap joint) in the region under a torqued washer, but very high bending
starting immediately at the washer edge. High bending and bolt rotation led to remote bearing failure at
relatively low loads and caused the bolt to pull through the laminate if loading was continued. Eriksson
(1990) demonstrated an increase in bearing strength with increasing clamping torque for both brittle and
toughened epoxy matrix systems. Failures occurred at washer edges rather than adjacent to the contact
point of the bolt and the laminate. Thus in the case of bolted connection, where clamp-up forces are exerted
through the bolt-head (washer) it is the washer edge areca away from the hole edge that requires detailed
analysis for failure initiation prediction. Singular stress fields are expected to arise near these edges
requiring asymptotic analysis.

Detailed three-dimensional analysis is required to assess the local stress fields around the bolt-head or
washer. However, accurate stress calculation in the vicinity of a stress singularity is not easily achieved,
even with a dense finite element mesh. An elasticity-based solution in the vicinity of the singular points is
required to validate and verify the full-field numerical solution. In addition, determining the coefficients of
the singular terms opens the possibility of applying a fracture mechanics-type approach to damage ac-
cumulation predictions.

Mikhailov (1978) appears to be the first to apply singularity analysis (in terms of asymptotic expansions)
to laminated composite plates. Normal and tangential stresses were applied to two bonded wedges of
different anisotropic materials and the degree of singularity at the vertex calculated. The procedure was
applied to geometries representing a laminated plate free edge, and the degree of singularity at the interface
of the plies and free edge was calculated (Mikhailov, 1979a,b). A polymeric/aluminum composite was also
considered.

Wang and Choi (1982) used Lekhnitskii’s complex stress function to construct a series solution to the
same anisotropic wedge problem considered by Mikhailov. The multiplier (coefficient of the singular term)
was determined by boundary collocation. This approach was later adapted into a singular, hybrid com-
posite-wedge finite element (Wang and Yuan, 1983). Zwiers et al. (1982), using the Stroh formalism, found
the stress near the free edge of an interface to include both exponential and logarithmic terms. Zwier’s
analysis provides all quantities except constants that must be determined by solving the complete problem
with boundary conditions. Both types of singularities depend on stacking sequence. The exponential sin-
gularity depends on the boundary conditions, while the logarithmic singularity does not.

The results of asymptotic analysis at the ply interface in the straight free edge were first applied to open
holes by Ericson et al. (1984). He assumed that the singular term of the asymptotic expansion at the hole
edge was exactly the same as at the straight edge if the ply orientation, with respect to the direction tan-
gential to the hole edge, is the same as the ply orientation in the straight edge problem. A special “hole
element,” combining the asymptotic and numerical approximation, was constructed. However, the singular
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hole “elements,” which combined a singular solution with a finite element solution, did not satisfy inter-
laminar traction continuity at the hole edge.

Folias (1989) developed an asymptotic solution for 3-D stresses near the interface between isotropic plies
and the free edge of a hole. He extended the analysis to orthotropic laminates and found the power of the
singularity to be dependent on location around the hole edge (Folias, 1992). For a graphite epoxy laminate
the order of singularity was an order of magnitude lower than for the isotropic plates. The analysis also
validated the assumptions Ericson used to estimate the power of the singularity around the hole.

Bar-Yoseph and Avrashi (1988) used a variational-asymptotic approach to analyze free-edge singular-
ities. As the location of the singularity is approached, results indicated that the singularity is approximated
by logr rather than »~*. Stolarski and Chiang (1989) examined laminates under axial stretching using
“enriched” finite elements. The authors concluded that both the logarithmic and exponential singularities
must be included if calculations of the singularity order were to be accurate. Reedy (1989) observed that the
stress singularity of the form r~* at the free edge of a typical laminate is rather weak.

Wang and Lu’s (1993) asymptotic analysis developed an assumed displacement-based finite element
including the singular asymptotic term for analyzing the singularity at a hole edge. The element was used
only near the free edge of the hole. Within the development, they showed that the first term of the
asymptotic expansion of the 3D elasticity problem, when expressed as a ratio of ply thickness to hole
diameter, represented a 2D elasticity problem. However, the resulting eigenfunctions of the 2D solution do
not satisfy the 3D equations in any finite volume.

Yang et al. (2003) developed a multilayer boundary element technique to analyze elastic pinned joints
under bearing and bypass loading and including friction. Employing Green’s functions satisfying inter-
laminar displacement and traction continuity, their method required discretization of only the hole surface.
The effects of loading sequence, cyclic loading, and friction on stress states in the contact zone were
examined. Reduced pressure in the contact zone was found to be offset by induction of significant shear
traction on the hole surface.

Systematic investigation of the character of the singular stress fields in the vicinity of the open and filled
holes in orthotropic laminates was performed by Iarve (1996, 1997, 2000). In the case of the filled hole
(Iarve, 1997), the asymptotic solution was extended to three-body contact to obtain the powers of singu-
larity arising at the ply interfaces and the hole edge in contact with elastic fastener as a function of the
fastener stiffness. In the fastener hole and the open hole case only one singular term with real power of
singularity was found and the stress fields obtained by using numerical analysis were shown to agree well
with the one term asymptotic expansion with appropriate coefficients. Iarve and Pagano (2001) super-
imposed the asymptotic solution and a spline-based numerical solution to create a full-field singular stress
solution for an open-hole laminate at the ply interface. Reissner’s variational principle was used. Coarse
out-of-plane and in-plane subdivisions were sufficient to accurately calculate the coefficients of the
asymptotic solution, which resulted in converged interlaminar stresses. A similar approach was applied to
develop a combined asymptotic numerical solution in the case of filled holes. The new technique was
experimentally validated by Iarve and Mollenhauer (2002) using the Moiré interferometry technique. With
the exception of the interlaminar normal component, the analytically calculated and experimentally
measured strains agreed very well for the [+30,/-30,/904]3s laminate considered. In the case of the inter-
laminar normal strain, however up to 20% difference in the stress amplitude was reported between the
experiment and prediction, though the shape of the distributions were very similar.

The objective of this work is to extend the latter approach beyond the open and pin-filled hole problems
to consider bolted joints with clamp-up. The singularities at the hole edge will be affected by the presence of
the bolt-head only through the multiplicative terms defined by the far-field solution, whereas the singular
terms and powers of singularity will remain unaffected. In accordance with experimental evidence
(Oplinger, 1996; Smith, 1986; Eriksson, 1990), the present study will focus on the new phenomenon
introduced by the bolt-head and clamp-up, namely the stress singularities under the bolt-head edge away



1896 T.J. Whitney et al. | International Journal of Solids and Structures 41 (2004) 1893—1909

from the hole edge where contact with the surface of the plate occurs. The power of the singularity existing
at the outer edge of the bolt-head will be calculated for boundary conditions representing frictionless
contact of the bolt-head with the composite plate. The multiplicative coefficients of the singular term will be
calculated by comparing the asymptotic expansion to a numerical full-field analysis. The resulting analysis
can be applied to composite bolted joint designs using arbitrary lay-ups and a very general class of fas-
teners, to understand the local stress distribution and improve reliability and part life.

2. Problem statement

An idealized geometry representing the bolt-head and laminate is shown on Fig. 1. An n-ply composite
plate of length X7, width Y;, and thickness H, contains a hole of diameter Dy located at coordinates
(¢, ). A bolt with shank diameter Dy, head diameter d, and head thickness #,, is centrally located in the
hole. Although in general Dy # Dyor (clearance or press-fit is possible), Dpoe = Dyore in the present work.
Mid-plane symmetry is assumed, restricting the numerical solution to double-lap joints and symmetric
laminate stacking sequences. These restrictions can be lifted readily at the expense of large computational
costs.

The loading conditions are applied via displacement boundary conditions at plate edges

I/ly(XL,y,Z) = 07 MX(XL7)/,Z) = Up (1)

Ty

l— D2 —> m

A
H/2
L —3
L—Iﬁ D, /2 Midplane Symmet
D, /2 bolt P y ry
SECTION B-B

Fig. 1. Idealized geometry representing bolt-head and laminate.
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Mid-surface symmetry conditions require
u(x,»,0) =0 2)

The top center of the bolt-head is constrained in the in-plane directions, so the applied displacement wu
generates bearing loading. Clamp-up force is simulated by applying a displacement J, to the mid-surface of
the bolt shank. All other facial surfaces are traction free. The constitutive relations in each ply are as
follows:

Oij = Cg'kl(sk/ — o, AT) (3)

where C7;; and &}, are elastic moduli and thermal expansion coeficients of the p-th orthotropic ply, and AT
is the temperature change.

2.1. Asymptotic analysis

The location under consideration is at the outer diameter of the fastener head where it contacts the
surface of the composite, Fig. 2. A local curvilinear coordinate system #, i, 0 is established at the fastener
head edge with the circumferential coordinate direction 6 proceeding counterclockwise from the x-axis and
the local orientation angle y proceeding counterclockwise from the free surface of the plate. The variable 5
is a distance from the plate-bolt-head corner, normalized by the bolt-head radius.

The transformation between the global and local coordinate systems is given by:

ng(l—&—ncosd/)cosé) 4)

Fig. 2. Local curvilinear coordinate system.
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y==(1+ncosy)sinf (5)

z=—nsiny + H/2 (6)

N

Using the chain rule of differentiation and the Jacobian of the transformation, one can show that for an
arbitrary function F = F(n,y, ),

oF 2 oF OF siny sin 0 oF

a—E{COSO{acosd/—w n ]_(ncoswﬂ)@} @
oF 2 . oF OF sinys cos 0 oF

= or 5 e o) )
OF 2[0F . OF cos s

e C A ?

Following Iarve (1996), one notes that the first two terms in (7) and (8) are of the order F /5 (designated
0(F /n)) while the third term (containing the 6-derivative) is 6(F). Therefore the terms containing 0F /06 in
(7) and (8) can be neglected as # — 0, with the acknowledgement that the equations are exact only in the
asymptotic sense. The following operators are defined based on the relationships above:

sin i

0
A,—cosd/a—n— Py (10)
. 0 cosy O
A,,—Slnlﬁa——l— ’7 w (11)

Using these definitions, the equilibrium equations in the (x,y,z) coordinate system can be expressed as
Uy
{FA A, + GA A, +HA, AL u, =0 (12)
U
The matrices F, G, and H are functions of the elastic constants and coordinate 6 and are given in the

Appendix A.
The solution to (12) can be shown to have the form:

Uy dx
u, o =n'(siny + pcos )< d, (13)
u, dz

in which d = (d;,d,,d.), u, and A are arbitrary complex constants. Substituting (13) into (12) provides a
sixth-order characteristic equation, which yields values for u and the corresponding eigenvectors d. The
general solution to (12) is a linear combination of the forms (13) associated with each of the six eigenvalues

u:
6
=" fedr’(sin yy + py, cos )’ (14)
k=1

in which d; is the eigenvector associated with p,. Expressions for stress can be found by substituting (14)
into Hooke’s law written in terms of displacement:
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6
o; = /117**1 Z {fk(sin W + w, cos w)’“*l ([(C,-l cos 0 + Ci sin 0)py, + Cisldy

k=1

+ [(Ciasin 0 + Cig cos 0) w, + Cis]dy + [(Cia sin 0 + Cis cos 0)w, + C,‘3]d,i):| , (15)

where contracted notations are used, so that (¢;; i =1,2,...,6) correspond to oy, 0y, 0., 0z, 0y, and oy,
respectively, Cy;, i,j =1,...,6 are the components of the elasticity matrix in contracted notation, and
did;d; are the components of d,. Material symmetry eliminates a number of terms in (15). For example, a
material with its z-axis perpendicular to a plane of symmetry (such as a unidirectional composite ply) has
C14 = C15 = C24 = C25 = C34 = C35 = C4() = CS() = 0. The only unknown quantities in EqS (11) and (12) are
the values of the power of singularity 4 and coefficients f;, k = 1,..., 6. These quantities are found from the
boundary conditions at material interfaces and free edges. Six boundary conditions can be written at the
material interface = = and three at each of the free edges y = 0,7/2. For the frictionless boundary
conditions between the bolt-head and the plate:

o) =a) =3¢ =0, Yy=0,n/2

6(31) _ O_gZ)

(1) 2
Uz " =1y —

; —x 16
021) _ O_g]) —0 Y ( )
0512> = 022) =0

Substituting the expressions for displacement (14) and stress (15) into the boundary conditions (16) yields a
system of 12 homogeneous equations with 12 unknowns. Non-trivial solutions exist if the determinant of
the coefficient matrix vanishes, which occurs only for specific values of the exponent A. An LU-
decomposition algorithm (Press et al., 1989) is used to calculate the determinant, along with Muller’s
method (Gerald and Wheatley, 1994) for finding the A roots. There are an infinite number of A’s that
qualify, including all integers (Iarve, 1996). Once a value of A is obtained, values of f; for each material are
determined as eigenvectors of the 12 by 12 system of equations. They are defined with accuracy to an
undetermined multiplicative factor, which is a function of the circumferential coordinate 0 only. The stress
components can be represented by a linear combination of all solutions associated with the A’s:

o= S;(0)Am" e (4,0, 0) + O(n™) (17)
=1

The factors S;(0) are the undetermined multiplicative coefficients to be found using a far-field solution that
accounts for externally applied loads and constraints. The undefined additive O(*), where Re(4;) > 0 and
A1 is the smallest root (dominating singular root), appears because only a single term is retained in the
expansion about 7 in (5)—(7). The presence of such terms prohibits using expansion (17) to approximate the
exact 3-D elastic solution even if we were to include a large amount of terms. The restriction is the con-
sequence of the curvature of the singular contour as it proceeds around the edge of the bolt-head. In the
following we will be interested in the singular roots 0 < Re(4) < 1 and all roots Re(4) < Re(4; + 1).

Our goal will be to define a region in the vicinity of the singularity in which the full-field numerical
solution can be matched with a one or more term asymptotic expansion by appropriately choosing coef-
ficients S;(0). If this region is sufficiently close to the singular contour then the contribution of the omitted
terms in series (17) will be small and provide accurate values of coefficients of the initial terms of the
asymptotic expansion.
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2.2. Full-field numerical solution

The full-field solution could be obtained by any method that satisfies the external boundary conditions,
including finite element analysis and/or boundary element analysis. In the present work the full-field
solution was obtained by using a spline-based approximation of the displacements within a minimum

potential energy formulation.

2.2.1. B-spline displacement approximation in unit volume
Consider an elementary volume [0, 1]3 and a set of piecewise polynomial 3-D functions X;(x) which

provide partition of unity-type basis functions for displacement approximation, so that

u(x) =Y X(x)U;

in which U; are displacement approximation coefficients not necessarily associated with nodal displace-
ments, and index i in (18) varies from 1 to the total number of approximation functions, which we will

(18)

denote as a set Q.
Three-dimensional shape functions X;(x) in approximation (16) are constructed from one-dimensional

sets of B-spline basis functions of order » and defect & as standard tensor products, where the power of the
spline is defined by the maximum power of the polynomials used to construct the spline, and the defect &
defines the maximum number of discontinuous derivatives at a node, where 1 <k < n. Practical usefulness
of the spline approximation for solution of boundary value problems is determined by the properties of the
set of basis functions used in the analysis. The B-spline basis functions, possessing the shortest possible
support for a given power n and defect k, represent an attractive choice (see larve (1996) and references
therein). A set of cubic (n = 3) B-spline basis functions with defect £ = 1 built over seven subdivisions is
shown in Fig. 3. The minimum support length property provides maximum sparsity of the resulting system
of equations. Another significant advantage of the B-spline basis is the ability to change the defect of the
spline at the end nodes. This allows one to build a system of basis functions such that the displacements at
the end nodes are the actual coefficients of the spline functions, providing a convenient way of imposing

Polynomial Spline Functions (Degree =n = 3)
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Fig. 3. Cubic spline over four intervals.
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boundary conditions by simply assigning spline function coefficients analogous to a traditional finite ele-
ment approximation. It should be noted that the displacements in the internal nodes are not explicitly equal
to the coefficients of the B-spline functions.

A recurrence relationship based on polynomial representation (Iarve, 1996) was used to build the set of
B-spline basis functions of arbitrary order and defect. Each one-dimensional basis spline function is non-
negative and possesses local support of no more than n — k + 2 nodal intervals. These one-dimensional
basis functions, as well as multidimensional ones obtained as a tensor product of one-dimensional splines,
represent a partition of unity with unit coefficients:

dxx)=1, xelo,1 (19)

i€Q

2.2.2. Approximation in arbitrary volume

Approximation (17) is applied piecewise in volume partitions of the structure of interest, so that each of
the partitions can be conformably mapped onto the unit volume [0, 1]3. In the case of B-spline approxi-
mation, the boundaries between these regions will be the only surfaces of C° displacement continuity,
whereas inside this volume the displacement approximation smoothness is defined by the defect of the
spline approximation. It is therefore desired to have large and few partitions. This is not always the case
with traditional p-type approximations, where only the power of approximation can be increased to achieve
given accuracy after the elements are defined. Curvilinear transformations x = #,(s) are defined for each
subvolume to map their physical volume into the unit volume, so that the displacement approximation in
global (x,y,z) coordinates can be written:

u?(x) =Y X (QUY, x =) (20)
i€Q;
where ¢ € [0, 1]’ and the sets of indexes Q;, j=1,...,N correspond to individual subvolumes.

The penalty function approach, along with the notion of a contact surface characteristic function
(Whitney and Iarve, 2002), is used to formulate the contact problem between the fastener and the plate.
Frictionless contact is assumed.

2.2.3. Far-field model discretization

The spline mesh used in the plate and bolt are shown in Fig. 4. Total of N = 38 subvolumes, shown in
different shades of gray were used, with C° continuity of displacements between adjacent subvolumes.
White lines indicate the internal mesh in the subvolumes, where displacement continuity is defined by the
defect of the spline approximation. Cubic splines with defect £ = 1 were used in the analysis, yielding twice
continuously differentiable displacement fields defining the overlapping splines. The close-up in Fig. 5
highlights the non-uniform distribution of mesh intervals that reduces the interval length near the points of
interest, i.e., the edge of the bolt-head. Contact surfaces are also highlighted.

Fig. 4. BSAM mesh used in far-field analysis.
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Cubic Splines in
All Directions

Circumferential Region of
Singular Stresses

Cubic Splines in
All Directions

Fig. 5. BSAM mesh details for bolt—plate interaction.

3. Results and discussion—stress singularity

The asymptotic solution procedure described has been applied to the washer-edge configuration using
the material properties shown in Table 1. Material 1 is assumed to consist of an orthotropic 0-degree ply
with properties typical of an aerospace-grade high-modulus graphite/epoxy prepreg. Material 2, repre-
senting the fastener head, is assumed to consist of an isotropic material. Several fastener materials of
varying stiffness have been used in the calculation, including a generic thermoplastic-bearing material de-
noted by “TPB” in Table 1. Because the solution form (14) is valid for all-distinct values of 1, and isotropic
materials exhibit two distinct roots (&) of triple multiplicity, the properties of Material 2 are made slightly
orthotropic. X-direction properties have been marginally increased by an “orthotropy factor” denoted ¢, of
magnitude 107, creating transverse isotropy in the y — z plane:

E] :(1+8)E, E2 :E, E3 =F
_E
C2(1+v)’

viy=v, vz=(l+¢v, vp=(1+¢)y

Ga3 Gis= 148Gy, Gn=(1+¢Gxs (21)

Table 1
Material properties in washer-edge singularity analysis
High-modulus 303 Steel 7075-T6 Aluminum Grade 12 Titanium  Generic TPB
graphite/epoxy
E (GPa) - 193.0 71.7 105.0 3.45
v - 0.25 0.33 0.34 0.35
£ - I1x1077 1x1077 1x1077 1x1077
E, (GPa) 139.0 193.0000193 71.70000717 104.8000105 3.450000345
E, (GPa) 10.34 193.0000000 71.70000000 104.8000000 3.450000000
E; (GPa) 10.34 193.0000000 71.70000000 104.8000000 3.450000000
Gy (GPa) 3.31 77.20000000 26.95488722 39.10447761 1.277777778
Gy; (GPa) 5.52 77.20000772 26.95488991 39.10448152 1.277777906
G (GPa) 5.52 77.20000772 26.95488991 39.10448152 1.277777906
V23 0.55 0.2500000000 0.3300000000 0.340000000 0.350000000
Vi3 0.30 0.2500000250 0.3300000330 0.340000034 0.350000035

Vi 0.30 0.2500000250 0.3300000330 0.340000034 0.350000035
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This approach has been shown to yield accurate results for filled—hole edge singularities between isotropic
materials (Iarve, 1997).

3.1. Singularity exponent and angular distribution of stress amplitudes

Fig. 6 shows the singularity exponent at the bolt-head edge as a function of circumferential position
around the hole for steel, aluminum, titanium, and TPB bolt-head materials, for a slip condition at the
interface (no shear tractions at the material interface). The results were obtained for 0° composite ply. Note
that the results for other surface ply orientations can be generated by simple horizontal shift of the curves
on Fig. 6, due to isotropic properties of the bolt-head. At each location only one purely real root is found.
As expected, the power of singularity (A — 1) weakens with reduced stiffness of the bolt-head, ranging from
almost crack-like (1 ~ —0.53) to free-edge like singularities (4 — 1) ~ —0.15 for TPB.

In aerospace applications the practical range of bolt-head stiffnesses is between aluminum and steel, with
the most common bolt-head material being titanium. For this range of materials the power of singularity is
very close to —0.5, is limited to one real root, and exhibits only small circumferential variation. These
characteristics resemble those of a crack in linear fracture mechanics. Therefore the question of determining
the multiplicative coefficient S;(0) in Eq. (17) is of significant interest. Experimental work, required to
further investigate whether a single parameter S;(0) can be validated to control the bolt-head edge shear-in
failure, extends beyond the scope of present work. The remainder of this paper concentrates on comparison
of the stress fields resulting from the singular term of the asymptotic solution and the full-field numerical
solution in order to obtain S (0).

The angular distributions of the stress amplitudes 6,((1)(/11, ¥, 0) as functions of y are shown in Fig. 7 at
four circumferential 0 locations. All stress components are transformed into the local (i, ¥, 0) coordinate
system. A steel bolt-head was examined. Stress amplitudes were normalized so that 6%(21, 180°,0) =1
The range 90° <y < 180° of the angular coordinate is inside the bolt-head and 180° < y < 360° is inside the
composite layer. The stress amplitudes satisfy the boundary conditions (16): 65;‘/1(/11, ¥, 0) is continuous at

Singularity Exponent for 0° Graphite/Epoxy Ply
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is zero at all three surfaces iy = 90°, 180° and 360°. A common feature evident all the stress components is
that their amplitude inside the isotropic bolt-head is practically independent of the circumferential position,
whereas inside the orthotropic plate it exhibits strong dependency upon 6. At the same time the shear stress

components 6%(&1,%, 0) and 6,(71(2(11,1#, 0) are also very small inside the bolt-head.

90°, 360°; the transverse shear stress ¢

the yy = 180° interface and zero at the free boundaries



T.J. Whitney et al. | International Journal of Solids and Structures 41 (2004) 1893—1909 1905

Table 2

Geometric parameter values for full-field analysis cases
Symbol Description Value (mm)
d Bolt head diameter 9.525
Dyolt Bolt shank diameter 6.35
Dhole Hole diameter 6.35
ton Bolt Head thickness 6.35
Oy Bolt shank displacement (clamp-up) 8.333x107*
H Plate thickness 12.70
XL Plate length 152.4
) Plate width 76.20
Xe Hole-center x-position 76.20
Ve Hole-center y-position 38.10

3.2. Numerical analysis and calculation of multiplicative coefficient S;(0)

The multiplicative coefficient S;(6) at specific circumferential positions (6-locations) was calculated by
comparing the far-field solution to the asymptotic solution at a given radial distance from the singular
point. A double-lap (symmetric against z = 0) plane bearing loading problem under boundary conditions
(1) is considered. The bolt head and plate dimensions are given in Table 2. The applied displacement was
ug = 0.1524 (1000 pe). Circumferential location 6 = 150° and steel bolt-head material will be chosen for
detailed stress comparison. Two dimensionless (normalized by hole radius) radial distances from the sin-
gular contour were examined, 7 = 0.00167 and 0.00333. The asymptotic and numerical solutions at the
described locations are compared in Fig. 8. Excellent agreement between the two solutions for all stress
components was achieved by setting S;(150°) = —11.18. It is worth mentioning that due to the strong
character of the singularity the influence of the non-singular terms in the series (17) is quite small compared
to the case with weak singularities (Iarve, 1997). This property manifests itself in the fact that, with
exception of oy (constant additive term = 10), no constant additive terms were added to the one-term
asymptotic expansion to obtain good agreement with the full-field numerical solution.

Fig. 9 displays S;(0) as a function of circumferential coordinate in the bearing-loading problem under
consideration. Based on the comparisons presented above, one stress component (oy,) was used at
n = 0.00167 to determine the multiplicative factor of the singular term. The curve is symmetric due to the
large preload applied to the fastener relative to the bearing load. If the preload was smaller, non-uniform
distribution of clamping stress would result in an unsymmetric appearance in Fig. 9. It is hoped that the
quantity S (0) can be used to predict failure initiation at the bolt-head edge under general loading conditions.

4. Conclusions and recommendations

Singular stresses arising in the neighborhood of frictionless contact surfaces introduced in laminated
orthotropic plates by mechanical joining with clamp-up were investigated by using local asymptotic solutions
and full-field numerical analysis. Three-dimensional B-spline approximation of displacements and a penalty
function-based contact solution was used for numerical analysis. Clamping loads are included in the analysis.

The present study has examined specific combinations of bolt-head and composite plate materials that
represent a range of materials and relative stiffnesses encountered in practical applications. It was found
that the characteristics of the stress singularity for such practically important combinations as titanium
bolt-head/carbon fiber composite plate are similar to that of a crack in terms of the power of singularity and
uniqueness of the singular term.
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Comparison of all stress components in the vicinity of the singular contour was performed between the

full-field numerical solution and the singular asymptotic solution. Excellent agreement was observed

In view of the similarities in character of the singular stress behavior at the bolt
crack in linear-elastic fracture mechanics, experimental work to further investigate whether a single

plicative factor of the singular stress amplitude as a function of circumferential coordinate in the double-lap
parameter S;(0) can be validated to control the bolt-head edge shear-in failure is recommended.

allowing for reliable determination of the unknown multiplicative factor. The distribution of the multi-
bearing problem with clamp-up was obtained.
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