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Abstract

Singular stresses arising in the neighborhood of contact surfaces introduced in laminated orthotropic plates by

mechanical joining with clamp-up were investigated by using local asymptotic solutions and full-field numerical

analysis. Three-dimensional B-spline approximation of the displacements and a penalty function-based contact solution

was used in the numerical analysis. Recent work has shown that fracture in bolted composite joints may initiate near the

outer edge of the bolt head or washer away from the hole edge, particularly if the joint is preloaded. Material and

geometric discontinuities exist in these regions, resulting in singular stress behavior. Asymptotic stress analysis was

performed to obtain the power of singularity in these regions as a function of the bolt-head (washer) stiffness. Fric-

tionless contact conditions were assumed. It was found that the characteristics of the stress singularity for such

practically important combinations as titanium bolt-head and carbon fiber composite plate are similar to a crack in

terms of the power of singularity and uniqueness of the singular term. Coefficients of the singular terms of the

asymptotic expansion were determined by comparison with the numerical solution in the close vicinity of the singular

contour. Good agreement between the asymptotic and numerical solution in the transition regions was observed.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Composite materials; Stress singularity; Asymptotic solution; Bolted joint
1. Introduction

Fasteners have been the primary method of joining advanced composite materials since their intro-

duction into mainstream aerospace applications in the mid-1960s. Design techniques for fastened joints

have received considerable attention since that time due to the complex nature of the stress fields in the

vicinity of the joint, the variety of failure modes that can occur, and the complexity of stress relieving

mechanisms such as matrix cracking. Optimal bolted joint design requires a thorough understanding of two
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important factors. First, the local stress field, including clamping forces, must be determined. Secondly, the

development of damage and failure, and how localized damage influences the stress field, must be

understood.

Recent advances in analysis and design of composite bolted joints typically have focused on areas of the
joint at which damage might initiate, possibly leading to failure. Experimental observations have suggested

several critical areas in such joints (Oplinger, 1996). These include the ply interface at the inside hole surface

(whether or not the surface is in contact with the fastener shank); the corner formed by the inside hole edge

and the top or bottom surface of the plate (which may be in contact with the bolt shank and the bolt-head

or washer, respectively); and the outer edge of the bolt-head or washer where it contacts the top or bottom

of the plate.

While the contact of the outer edge of the bolt-head with the composite plate has received less attention,

the experimental evidence suggests this area should be of primary interest under certain conditions. For
example, Smith et al. (1986) noted that washers in single-lap joints tend to ‘‘dig in’’ as the bolt and washer

rotate under load, producing early damage in the loading cycle. Clip gauging suggested very little bending

(due to eccentric loading of the single-lap joint) in the region under a torqued washer, but very high bending

starting immediately at the washer edge. High bending and bolt rotation led to remote bearing failure at

relatively low loads and caused the bolt to pull through the laminate if loading was continued. Eriksson

(1990) demonstrated an increase in bearing strength with increasing clamping torque for both brittle and

toughened epoxy matrix systems. Failures occurred at washer edges rather than adjacent to the contact

point of the bolt and the laminate. Thus in the case of bolted connection, where clamp-up forces are exerted
through the bolt-head (washer) it is the washer edge area away from the hole edge that requires detailed

analysis for failure initiation prediction. Singular stress fields are expected to arise near these edges

requiring asymptotic analysis.

Detailed three-dimensional analysis is required to assess the local stress fields around the bolt-head or

washer. However, accurate stress calculation in the vicinity of a stress singularity is not easily achieved,

even with a dense finite element mesh. An elasticity-based solution in the vicinity of the singular points is

required to validate and verify the full-field numerical solution. In addition, determining the coefficients of

the singular terms opens the possibility of applying a fracture mechanics-type approach to damage ac-
cumulation predictions.

Mikhailov (1978) appears to be the first to apply singularity analysis (in terms of asymptotic expansions)

to laminated composite plates. Normal and tangential stresses were applied to two bonded wedges of

different anisotropic materials and the degree of singularity at the vertex calculated. The procedure was

applied to geometries representing a laminated plate free edge, and the degree of singularity at the interface

of the plies and free edge was calculated (Mikhailov, 1979a,b). A polymeric/aluminum composite was also

considered.

Wang and Choi (1982) used Lekhnitskii�s complex stress function to construct a series solution to the
same anisotropic wedge problem considered by Mikhailov. The multiplier (coefficient of the singular term)

was determined by boundary collocation. This approach was later adapted into a singular, hybrid com-

posite-wedge finite element (Wang and Yuan, 1983). Zwiers et al. (1982), using the Stroh formalism, found

the stress near the free edge of an interface to include both exponential and logarithmic terms. Zwier�s
analysis provides all quantities except constants that must be determined by solving the complete problem

with boundary conditions. Both types of singularities depend on stacking sequence. The exponential sin-

gularity depends on the boundary conditions, while the logarithmic singularity does not.

The results of asymptotic analysis at the ply interface in the straight free edge were first applied to open
holes by Ericson et al. (1984). He assumed that the singular term of the asymptotic expansion at the hole

edge was exactly the same as at the straight edge if the ply orientation, with respect to the direction tan-

gential to the hole edge, is the same as the ply orientation in the straight edge problem. A special ‘‘hole

element,’’ combining the asymptotic and numerical approximation, was constructed. However, the singular
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hole ‘‘elements,’’ which combined a singular solution with a finite element solution, did not satisfy inter-

laminar traction continuity at the hole edge.

Folias (1989) developed an asymptotic solution for 3-D stresses near the interface between isotropic plies

and the free edge of a hole. He extended the analysis to orthotropic laminates and found the power of the
singularity to be dependent on location around the hole edge (Folias, 1992). For a graphite epoxy laminate

the order of singularity was an order of magnitude lower than for the isotropic plates. The analysis also

validated the assumptions Ericson used to estimate the power of the singularity around the hole.

Bar-Yoseph and Avrashi (1988) used a variational-asymptotic approach to analyze free-edge singular-

ities. As the location of the singularity is approached, results indicated that the singularity is approximated

by log r rather than r�a. Stolarski and Chiang (1989) examined laminates under axial stretching using

‘‘enriched’’ finite elements. The authors concluded that both the logarithmic and exponential singularities

must be included if calculations of the singularity order were to be accurate. Reedy (1989) observed that the
stress singularity of the form r�a at the free edge of a typical laminate is rather weak.

Wang and Lu�s (1993) asymptotic analysis developed an assumed displacement-based finite element

including the singular asymptotic term for analyzing the singularity at a hole edge. The element was used

only near the free edge of the hole. Within the development, they showed that the first term of the

asymptotic expansion of the 3D elasticity problem, when expressed as a ratio of ply thickness to hole

diameter, represented a 2D elasticity problem. However, the resulting eigenfunctions of the 2D solution do

not satisfy the 3D equations in any finite volume.

Yang et al. (2003) developed a multilayer boundary element technique to analyze elastic pinned joints
under bearing and bypass loading and including friction. Employing Green�s functions satisfying inter-

laminar displacement and traction continuity, their method required discretization of only the hole surface.

The effects of loading sequence, cyclic loading, and friction on stress states in the contact zone were

examined. Reduced pressure in the contact zone was found to be offset by induction of significant shear

traction on the hole surface.

Systematic investigation of the character of the singular stress fields in the vicinity of the open and filled

holes in orthotropic laminates was performed by Iarve (1996, 1997, 2000). In the case of the filled hole

(Iarve, 1997), the asymptotic solution was extended to three-body contact to obtain the powers of singu-
larity arising at the ply interfaces and the hole edge in contact with elastic fastener as a function of the

fastener stiffness. In the fastener hole and the open hole case only one singular term with real power of

singularity was found and the stress fields obtained by using numerical analysis were shown to agree well

with the one term asymptotic expansion with appropriate coefficients. Iarve and Pagano (2001) super-

imposed the asymptotic solution and a spline-based numerical solution to create a full-field singular stress

solution for an open-hole laminate at the ply interface. Reissner�s variational principle was used. Coarse

out-of-plane and in-plane subdivisions were sufficient to accurately calculate the coefficients of the

asymptotic solution, which resulted in converged interlaminar stresses. A similar approach was applied to
develop a combined asymptotic numerical solution in the case of filled holes. The new technique was

experimentally validated by Iarve and Mollenhauer (2002) using the Moir�e interferometry technique. With

the exception of the interlaminar normal component, the analytically calculated and experimentally

measured strains agreed very well for the [+302/)302/904]3S laminate considered. In the case of the inter-

laminar normal strain, however up to 20% difference in the stress amplitude was reported between the

experiment and prediction, though the shape of the distributions were very similar.

The objective of this work is to extend the latter approach beyond the open and pin-filled hole problems

to consider bolted joints with clamp-up. The singularities at the hole edge will be affected by the presence of
the bolt-head only through the multiplicative terms defined by the far-field solution, whereas the singular

terms and powers of singularity will remain unaffected. In accordance with experimental evidence

(Oplinger, 1996; Smith, 1986; Eriksson, 1990), the present study will focus on the new phenomenon

introduced by the bolt-head and clamp-up, namely the stress singularities under the bolt-head edge away
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from the hole edge where contact with the surface of the plate occurs. The power of the singularity existing

at the outer edge of the bolt-head will be calculated for boundary conditions representing frictionless

contact of the bolt-head with the composite plate. The multiplicative coefficients of the singular term will be

calculated by comparing the asymptotic expansion to a numerical full-field analysis. The resulting analysis
can be applied to composite bolted joint designs using arbitrary lay-ups and a very general class of fas-

teners, to understand the local stress distribution and improve reliability and part life.
2. Problem statement

An idealized geometry representing the bolt-head and laminate is shown on Fig. 1. An n-ply composite

plate of length XL, width YL, and thickness H , contains a hole of diameter Dhole located at coordinates
(xc; yc). A bolt with shank diameter Dbolt, head diameter d, and head thickness tbh is centrally located in the

hole. Although in general Dhole 6¼ Dbolt (clearance or press-fit is possible), Dhole ¼ Dbolt in the present work.

Mid-plane symmetry is assumed, restricting the numerical solution to double-lap joints and symmetric

laminate stacking sequences. These restrictions can be lifted readily at the expense of large computational

costs.

The loading conditions are applied via displacement boundary conditions at plate edges
uyðXL; y; zÞ ¼ 0; uxðXL; y; zÞ ¼ u0 ð1Þ
XL
xc

yc

YL

BB
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Fig. 1. Idealized geometry representing bolt-head and laminate.
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Mid-surface symmetry conditions require
uzðx; y; 0Þ ¼ 0 ð2Þ

The top center of the bolt-head is constrained in the in-plane directions, so the applied displacement u0
generates bearing loading. Clamp-up force is simulated by applying a displacement dy to the mid-surface of

the bolt shank. All other facial surfaces are traction free. The constitutive relations in each ply are as

follows:
rij ¼ Cp
ijklðekl � apklDT Þ ð3Þ
where Cp
ijkl and apkl are elastic moduli and thermal expansion coefficients of the p-th orthotropic ply, and DT

is the temperature change.

2.1. Asymptotic analysis

The location under consideration is at the outer diameter of the fastener head where it contacts the

surface of the composite, Fig. 2. A local curvilinear coordinate system g, w, h is established at the fastener

head edge with the circumferential coordinate direction h proceeding counterclockwise from the x-axis and
the local orientation angle w proceeding counterclockwise from the free surface of the plate. The variable g
is a distance from the plate–bolt-head corner, normalized by the bolt-head radius.

The transformation between the global and local coordinate systems is given by:
x ¼ d
2
ð1þ g coswÞ cos h ð4Þ
Fig. 2. Local curvilinear coordinate system.
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y ¼ d
2
ð1þ g coswÞ sin h ð5Þ

z ¼ d
2
g sinwþ H=2 ð6Þ
Using the chain rule of differentiation and the Jacobian of the transformation, one can show that for an

arbitrary function F ¼ F ðg;w; hÞ,
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Following Iarve (1996), one notes that the first two terms in (7) and (8) are of the order F =g (designated

hðF =gÞ) while the third term (containing the h-derivative) is hðF Þ. Therefore the terms containing oF =oh in

(7) and (8) can be neglected as g ! 0, with the acknowledgement that the equations are exact only in the
asymptotic sense. The following operators are defined based on the relationships above:
Kt ¼ cosw
o

og
� sinw

g
o

ow
ð10Þ

Kn ¼ sinw
o

og
þ cosw

g
o

ow
ð11Þ
Using these definitions, the equilibrium equations in the (x; y; z) coordinate system can be expressed as
fFKtKt þGKtKn þHKnKng
ux
uy
uz

8<
:

9=
; ¼ 0 ð12Þ
The matrices F, G, and H are functions of the elastic constants and coordinate h and are given in the

Appendix A.

The solution to (12) can be shown to have the form:
ux
uy
uz

8<
:

9=
; ¼ gkðsinwþ l coswÞk

dx
dy
dz

8<
:

9=
; ð13Þ
in which d ¼ ðdx; dy ; dzÞ, l, and k are arbitrary complex constants. Substituting (13) into (12) provides a

sixth-order characteristic equation, which yields values for l and the corresponding eigenvectors d. The

general solution to (12) is a linear combination of the forms (13) associated with each of the six eigenvalues
l:
u ¼
X6

k¼1

fkdkgkðsinwþ lk coswÞ
k ð14Þ
in which dk is the eigenvector associated with lk. Expressions for stress can be found by substituting (14)

into Hooke�s law written in terms of displacement:
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ri ¼ kgk�1
X6

k¼1

fkðsinw
h

þ lk coswÞ
k�1 ½ðCi1 cos h

�
þ Ci6 sin hÞlk þ Ci5�dx

k

þ ½ðCi2 sin hþ Ci6 cos hÞlk þ Ci4�dy
k þ ½ðCi4 sin hþ Ci5 cos hÞlk þ Ci3�dz

k

�i
; ð15Þ
where contracted notations are used, so that (ri; i ¼ 1; 2; . . . ; 6) correspond to rxx, ryy , rzz, ryz, rxz, and rxy ,

respectively, Cij, i; j ¼ 1; . . . ; 6 are the components of the elasticity matrix in contracted notation, and

dx
k d

y
k d

z
k are the components of dk. Material symmetry eliminates a number of terms in (15). For example, a

material with its z-axis perpendicular to a plane of symmetry (such as a unidirectional composite ply) has
C14 ¼ C15 ¼ C24 ¼ C25 ¼ C34 ¼ C35 ¼ C46 ¼ C56 ¼ 0. The only unknown quantities in Eqs. (11) and (12) are

the values of the power of singularity k and coefficients fk, k ¼ 1; . . . ; 6. These quantities are found from the

boundary conditions at material interfaces and free edges. Six boundary conditions can be written at the

material interface w ¼ p and three at each of the free edges w ¼ 0; p=2. For the frictionless boundary

conditions between the bolt-head and the plate:
rð1Þ
3 ¼ rð1Þ

4 ¼ rð1Þ
5 ¼ 0; w ¼ 0;p=2
rð1Þ
3 ¼ rð2Þ

3

uð1Þ3 ¼ uð2Þ3

rð1Þ
4 ¼ rð1Þ

5 ¼ 0

rð2Þ
4 ¼ rð2Þ

5 ¼ 0

9>>>=
>>>;

w ¼ p ð16Þ
Substituting the expressions for displacement (14) and stress (15) into the boundary conditions (16) yields a

system of 12 homogeneous equations with 12 unknowns. Non-trivial solutions exist if the determinant of

the coefficient matrix vanishes, which occurs only for specific values of the exponent k. An LU-

decomposition algorithm (Press et al., 1989) is used to calculate the determinant, along with Muller�s
method (Gerald and Wheatley, 1994) for finding the k roots. There are an infinite number of k�s that
qualify, including all integers (Iarve, 1996). Once a value of k is obtained, values of fk for each material are

determined as eigenvectors of the 12 by 12 system of equations. They are defined with accuracy to an

undetermined multiplicative factor, which is a function of the circumferential coordinate h only. The stress

components can be represented by a linear combination of all solutions associated with the k�s:
rk ¼
X1
j¼1

SjðhÞkjgkj�1�rðjÞ
k ðkj;w; hÞ þOðgk1Þ ð17Þ
The factors SjðhÞ are the undetermined multiplicative coefficients to be found using a far-field solution that

accounts for externally applied loads and constraints. The undefined additive Oðgk1Þ, where Reðk1Þ > 0 and

k1 is the smallest root (dominating singular root), appears because only a single term is retained in the
expansion about g in (5)–(7). The presence of such terms prohibits using expansion (17) to approximate the

exact 3-D elastic solution even if we were to include a large amount of terms. The restriction is the con-

sequence of the curvature of the singular contour as it proceeds around the edge of the bolt-head. In the

following we will be interested in the singular roots 0 < ReðkÞ < 1 and all roots ReðkÞ < Reðk1 þ 1Þ.
Our goal will be to define a region in the vicinity of the singularity in which the full-field numerical

solution can be matched with a one or more term asymptotic expansion by appropriately choosing coef-

ficients SjðhÞ. If this region is sufficiently close to the singular contour then the contribution of the omitted

terms in series (17) will be small and provide accurate values of coefficients of the initial terms of the
asymptotic expansion.
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2.2. Full-field numerical solution

The full-field solution could be obtained by any method that satisfies the external boundary conditions,

including finite element analysis and/or boundary element analysis. In the present work the full-field
solution was obtained by using a spline-based approximation of the displacements within a minimum

potential energy formulation.
2.2.1. B-spline displacement approximation in unit volume

Consider an elementary volume ½0; 1�3 and a set of piecewise polynomial 3-D functions XiðxÞ which

provide partition of unity-type basis functions for displacement approximation, so that
uðxÞ ¼
X

XiðxÞUi ð18Þ
in which Ui are displacement approximation coefficients not necessarily associated with nodal displace-

ments, and index i in (18) varies from 1 to the total number of approximation functions, which we will
denote as a set X.

Three-dimensional shape functions XiðxÞ in approximation (16) are constructed from one-dimensional

sets of B-spline basis functions of order n and defect k as standard tensor products, where the power of the

spline is defined by the maximum power of the polynomials used to construct the spline, and the defect k
defines the maximum number of discontinuous derivatives at a node, where 16 k6 n. Practical usefulness
of the spline approximation for solution of boundary value problems is determined by the properties of the

set of basis functions used in the analysis. The B-spline basis functions, possessing the shortest possible

support for a given power n and defect k, represent an attractive choice (see Iarve (1996) and references
therein). A set of cubic (n ¼ 3) B-spline basis functions with defect k ¼ 1 built over seven subdivisions is

shown in Fig. 3. The minimum support length property provides maximum sparsity of the resulting system

of equations. Another significant advantage of the B-spline basis is the ability to change the defect of the

spline at the end nodes. This allows one to build a system of basis functions such that the displacements at

the end nodes are the actual coefficients of the spline functions, providing a convenient way of imposing
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Fig. 3. Cubic spline over four intervals.
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boundary conditions by simply assigning spline function coefficients analogous to a traditional finite ele-

ment approximation. It should be noted that the displacements in the internal nodes are not explicitly equal

to the coefficients of the B-spline functions.

A recurrence relationship based on polynomial representation (Iarve, 1996) was used to build the set of
B-spline basis functions of arbitrary order and defect. Each one-dimensional basis spline function is non-

negative and possesses local support of no more than n� k þ 2 nodal intervals. These one-dimensional

basis functions, as well as multidimensional ones obtained as a tensor product of one-dimensional splines,

represent a partition of unity with unit coefficients:
X
i2X

XiðxÞ � 1; x 2 ½0; 1�3 ð19Þ
2.2.2. Approximation in arbitrary volume

Approximation (17) is applied piecewise in volume partitions of the structure of interest, so that each of

the partitions can be conformably mapped onto the unit volume ½0; 1�3. In the case of B-spline approxi-

mation, the boundaries between these regions will be the only surfaces of C0 displacement continuity,

whereas inside this volume the displacement approximation smoothness is defined by the defect of the

spline approximation. It is therefore desired to have large and few partitions. This is not always the case

with traditional p-type approximations, where only the power of approximation can be increased to achieve
given accuracy after the elements are defined. Curvilinear transformations x ¼ gjð1Þ are defined for each

subvolume to map their physical volume into the unit volume, so that the displacement approximation in

global (x; y; z) coordinates can be written:
uðjÞðxÞ ¼
X
i2Xj

X ðjÞ
i ð1ÞUðjÞ

i ; x ¼ gjð1Þ ð20Þ
where 1 2 ½0; 1�3 and the sets of indexes Xj, j ¼ 1; . . . ;N correspond to individual subvolumes.

The penalty function approach, along with the notion of a contact surface characteristic function

(Whitney and Iarve, 2002), is used to formulate the contact problem between the fastener and the plate.

Frictionless contact is assumed.
2.2.3. Far-field model discretization

The spline mesh used in the plate and bolt are shown in Fig. 4. Total of N ¼ 38 subvolumes, shown in

different shades of gray were used, with C0 continuity of displacements between adjacent subvolumes.

White lines indicate the internal mesh in the subvolumes, where displacement continuity is defined by the

defect of the spline approximation. Cubic splines with defect k ¼ 1 were used in the analysis, yielding twice

continuously differentiable displacement fields defining the overlapping splines. The close-up in Fig. 5
highlights the non-uniform distribution of mesh intervals that reduces the interval length near the points of

interest, i.e., the edge of the bolt-head. Contact surfaces are also highlighted.
Fig. 4. BSAM mesh used in far-field analysis.
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3. Results and discussion––stress singularity

The asymptotic solution procedure described has been applied to the washer-edge configuration using

the material properties shown in Table 1. Material 1 is assumed to consist of an orthotropic 0-degree ply

with properties typical of an aerospace-grade high-modulus graphite/epoxy prepreg. Material 2, repre-

senting the fastener head, is assumed to consist of an isotropic material. Several fastener materials of

varying stiffness have been used in the calculation, including a generic thermoplastic-bearing material de-

noted by ‘‘TPB’’ in Table 1. Because the solution form (14) is valid for all-distinct values of lk, and isotropic
materials exhibit two distinct roots (�i) of triple multiplicity, the properties of Material 2 are made slightly

orthotropic. X -direction properties have been marginally increased by an ‘‘orthotropy factor’’ denoted e, of
magnitude 10�7, creating transverse isotropy in the y � z plane:
Table

Mater

E (G

m
e
E1 (

E2 (

E3 (

G23

G13

G12

m23
m13
m12
E1 ¼ ð1þ eÞE; E2 ¼ E; E3 ¼ E

G23 ¼
E

2ð1þ mÞ ; G13 ¼ ð1þ eÞG23; G12 ¼ ð1þ eÞG23

m23 ¼ m; m13 ¼ ð1þ eÞm; m12 ¼ ð1þ eÞm

ð21Þ
1

ial properties in washer-edge singularity analysis

High-modulus

graphite/epoxy

303 Steel 7075-T6 Aluminum Grade 12 Titanium Generic TPB

Pa) – 193.0 71.7 105.0 3.45

– 0.25 0.33 0.34 0.35

– 1· 10�7 1· 10�7 1· 10�7 1· 10�7

GPa) 139.0 193.0000193 71.70000717 104.8000105 3.450000345

GPa) 10.34 193.0000000 71.70000000 104.8000000 3.450000000

GPa) 10.34 193.0000000 71.70000000 104.8000000 3.450000000

(GPa) 3.31 77.20000000 26.95488722 39.10447761 1.277777778

(GPa) 5.52 77.20000772 26.95488991 39.10448152 1.277777906

(GPa) 5.52 77.20000772 26.95488991 39.10448152 1.277777906

0.55 0.2500000000 0.3300000000 0.340000000 0.350000000

0.30 0.2500000250 0.3300000330 0.340000034 0.350000035

0.30 0.2500000250 0.3300000330 0.340000034 0.350000035
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This approach has been shown to yield accurate results for filled––hole edge singularities between isotropic

materials (Iarve, 1997).
3.1. Singularity exponent and angular distribution of stress amplitudes

Fig. 6 shows the singularity exponent at the bolt-head edge as a function of circumferential position

around the hole for steel, aluminum, titanium, and TPB bolt-head materials, for a slip condition at the
interface (no shear tractions at the material interface). The results were obtained for 0� composite ply. Note

that the results for other surface ply orientations can be generated by simple horizontal shift of the curves

on Fig. 6, due to isotropic properties of the bolt-head. At each location only one purely real root is found.

As expected, the power of singularity (k� 1) weakens with reduced stiffness of the bolt-head, ranging from

almost crack-like (k � �0:53) to free-edge like singularities ðk� 1Þ � �0:15 for TPB.

In aerospace applications the practical range of bolt-head stiffnesses is between aluminum and steel, with

the most common bolt-head material being titanium. For this range of materials the power of singularity is

very close to )0.5, is limited to one real root, and exhibits only small circumferential variation. These
characteristics resemble those of a crack in linear fracture mechanics. Therefore the question of determining

the multiplicative coefficient S1ðhÞ in Eq. (17) is of significant interest. Experimental work, required to

further investigate whether a single parameter S1ðhÞ can be validated to control the bolt-head edge shear-in

failure, extends beyond the scope of present work. The remainder of this paper concentrates on comparison

of the stress fields resulting from the singular term of the asymptotic solution and the full-field numerical

solution in order to obtain S1ðhÞ.
The angular distributions of the stress amplitudes �rð1Þ

k ðk1;w; hÞ as functions of w are shown in Fig. 7 at

four circumferential h locations. All stress components are transformed into the local ðg;w; hÞ coordinate
system. A steel bolt-head was examined. Stress amplitudes were normalized so that �rð1Þ

wwðk1; 180�; hÞ ¼ 1.

The range 90�6w < 180� of the angular coordinate is inside the bolt-head and 180� < w6 360� is inside the
composite layer. The stress amplitudes satisfy the boundary conditions (16): �rð1Þ

wwðk1;w; hÞ is continuous at
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Fig. 7. Stress amplitudes for steel on 0� ply, slip condition, h ¼ 150�.
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the w ¼ 180� interface and zero at the free boundaries w ¼ 90�, 360�; the transverse shear stress �rð1Þ
wg ðk1;w; hÞ

is zero at all three surfaces w ¼ 90�, 180� and 360�. A common feature evident all the stress components is

that their amplitude inside the isotropic bolt-head is practically independent of the circumferential position,

whereas inside the orthotropic plate it exhibits strong dependency upon h. At the same time the shear stress

components �rð1Þ
wh ðk1;w; hÞ and �rð1Þ

gh ðk1;w; hÞ are also very small inside the bolt-head.



Table 2

Geometric parameter values for full-field analysis cases

Symbol Description Value (mm)

d Bolt head diameter 9.525

Dbolt Bolt shank diameter 6.35

Dhole Hole diameter 6.35

tbh Bolt Head thickness 6.35

dy Bolt shank displacement (clamp-up) 8.333· 10�4

H Plate thickness 12.70

XL Plate length 152.4

YL Plate width 76.20

xc Hole-center x-position 76.20

yc Hole-center y-position 38.10
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3.2. Numerical analysis and calculation of multiplicative coefficient S1ðhÞ

The multiplicative coefficient S1ðhÞ at specific circumferential positions (h-locations) was calculated by

comparing the far-field solution to the asymptotic solution at a given radial distance from the singular
point. A double-lap (symmetric against z ¼ 0) plane bearing loading problem under boundary conditions

(1) is considered. The bolt head and plate dimensions are given in Table 2. The applied displacement was

u0 ¼ 0:1524 (1000 le). Circumferential location h ¼ 150� and steel bolt-head material will be chosen for

detailed stress comparison. Two dimensionless (normalized by hole radius) radial distances from the sin-

gular contour were examined, g ¼ 0:00167 and 0.00333. The asymptotic and numerical solutions at the

described locations are compared in Fig. 8. Excellent agreement between the two solutions for all stress

components was achieved by setting S1ð150�Þ ¼ �11:18. It is worth mentioning that due to the strong

character of the singularity the influence of the non-singular terms in the series (17) is quite small compared
to the case with weak singularities (Iarve, 1997). This property manifests itself in the fact that, with

exception of rhh (constant additive term¼ 10), no constant additive terms were added to the one-term

asymptotic expansion to obtain good agreement with the full-field numerical solution.

Fig. 9 displays S1ðhÞ as a function of circumferential coordinate in the bearing–loading problem under

consideration. Based on the comparisons presented above, one stress component (rwg) was used at

g ¼ 0:00167 to determine the multiplicative factor of the singular term. The curve is symmetric due to the

large preload applied to the fastener relative to the bearing load. If the preload was smaller, non-uniform

distribution of clamping stress would result in an unsymmetric appearance in Fig. 9. It is hoped that the
quantity S1ðhÞ can be used to predict failure initiation at the bolt-head edge under general loading conditions.
4. Conclusions and recommendations

Singular stresses arising in the neighborhood of frictionless contact surfaces introduced in laminated

orthotropic plates bymechanical joining with clamp-up were investigated by using local asymptotic solutions

and full-field numerical analysis. Three-dimensional B-spline approximation of displacements and a penalty

function-based contact solution was used for numerical analysis. Clamping loads are included in the analysis.

The present study has examined specific combinations of bolt-head and composite plate materials that

represent a range of materials and relative stiffnesses encountered in practical applications. It was found

that the characteristics of the stress singularity for such practically important combinations as titanium
bolt-head/carbon fiber composite plate are similar to that of a crack in terms of the power of singularity and

uniqueness of the singular term.



Fig. 8. Comparison of numerical and asymptotic solutions at h ¼ 150�.
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Comparison of all stress components in the vicinity of the singular contour was performed between the

full-field numerical solution and the singular asymptotic solution. Excellent agreement was observed

allowing for reliable determination of the unknown multiplicative factor. The distribution of the multi-
plicative factor of the singular stress amplitude as a function of circumferential coordinate in the double-lap

bearing problem with clamp-up was obtained.

In view of the similarities in character of the singular stress behavior at the bolt-head edge to that of a

crack in linear-elastic fracture mechanics, experimental work to further investigate whether a single

parameter S1ðhÞ can be validated to control the bolt-head edge shear-in failure is recommended.
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